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ABSTRACT

Here we present timing analysis of a set of eight Rossi X-ray Timing Explorer (RXTE) observations of the
black hole candidate GX 339-4 that were taken during its hard/low state. On long time scales, the RXTE All Sky
Monitor data reveal evidence of a 240 day periodicity, comparable to timescales expected from warped, precessing
accretion disks. On short timescales all observations save one show evidence of a persistent fQPO _ 0.3 Hz QPO.

The broad band (10-3-102 Hz) power appears to be dominated by two independent processes that can be modeled
as very broad Lorentzians with Q < 1. The coherence function between soft and hard photon variability shows
that if these are truly independent processes, then they are individually coherent, but they are incoherent with one
another. This is evidenced by the fact that the coherence function between the hard and soft variability is near
unity between 5 x 10-3-10Hz but shows evidence of a dip at f _-, 1Hz. This is the region of overlap between
the broad Lorentzian fits to the PSD. Similar to Cyg X-l, the coherence also drops dramatically at frequencies

10Hz. Also similar to Cyg X-l, the hard photon variability is seen to lag the soft photon variability with the

lag time increasing with decreasing Fourier frequency. The magnitude of this time lag appears to be positively
correlated with the flux of GX 339-4. We discuss all of these observations in light of current theoretical models
of both black hole spectra and temporal variability.

Subject headings: accretion -- black hole physics -- Stars: binaries -- X-rays: Stars

1. INTRODUCTION

In a companion paper to this work (Wilms et al. 1998a; here-
after paper I) we have presented spectral analysis of a series of
Advanced Satellite for Cosmology and Astrophysics (ASCA)
and simultaneous radio/Rossi X-ray Timing Explorer (RXTE)
observations of the black hole candidate (BHC) GX 339-

4. This source has exhibited both spectrally soft states (cf.
Grebenev et al. 1991; Miyamoto et al. 1991) and spectrally
hard states (cf. Grebenev et al. 1991; Miyamoto et al. 1992;
Zdziarski et al. 1998). Both the ASCA and RXTE observations

presented in paper I showed GX 339-4 to be in spectrally hard
and low luminosity (3-9 keV flux < 10-9 ergs cm -2 s-]) states.
The eight RXTE observations spanned roughly a factor of five
in terms of observed 3-9 keV flux.

In this work we shall consider the timing analysis of the
eight RXTE observations. Timing analysis for GX 339-4 pre-
viously has been presented for the soft, bright 'very high state'
(Miyamoto et al. 1991), the soft, fainter 'high state' (Grebenev
et al. 1991), and the hard 'low state' (Grebenev et al. 1991;

Miyamoto et al. 1992). In addition, timing analysis has been
presented for so-called 'intermediate states', which are bright
but spectrally harder than the typical 'very high' or 'high states'
0Vltndez & van der Klis 1997). In general, the harder states ex-
hibit more temporal variability than the softer states (of. van
der Klis 1989). Timing analyses of the GX 339-4 hard state
have shown similar results to analyses of other hard state BHC
(Miyamoto et al. 1992). Specifically, the GX 339-4 tem-
poral variability has been observed to be similar to that of
Cygnus X-1 (Belloni & Hasinger 1990a; Belloni & Hasinger
1990b; Miyamoto et al. 1992; Nowak et al. 1998a, and refer-
ences therein).

A discussion of Fourier techniques in specific, and timing

analysis in general, has been presented by van der Klis (1989).
Here we apply these Fourier analysis techniques in the same
manner as for our RXTE observations of Cyg X-1 (Nowak
et al. 1998a). Specifically, we used the same techniques for
estimating: deadtime corrections (Zhang et al. 1995; Zhang &
Jahoda 1996); the error bars and Poisson noise levels of the
Power Spectral Density (PSD) (Leahy et al. 1983; van der Klis
1989); the error bars and noise levels for the coherence function
(Bendat & Piersol 1986; Vaughan & Nowak 1997); and the er-
ror bars and noise levels for the Fourier frequency-dependent

time lag between hard and soft photon variability (Bendat &
Piersol 1986; Nowak et al. 1998a). A self-contained discussion
of these techniques as regards RXTE timing analysis is given
by Nowak et al. (1998a).

This paper is organized as follows. First we consider evi-
dence for long term periodicities in the RXTE All Sky Monitor
(ASM) data in section 2. In section 3 we consider the Power
Spectral Density (PSD). In section 4 we consider both the co-
herence function (cf. Vaughan & Nowak 1997) and the Fourier
frequency-dependent time lags between hard and soft photon
variability. We discuss the theoretical implications of these ob-
servations in section 5. We then summarize our results in sec-
tion 6.

2. ALL SKY MONITOR OBSERVATIONSOF LONG
'CHARACTERISTICTIMESCALES'IN GX 339--4

We used data from the All Sky Monitor on RXTE to study
the long-term behavior of GX 339-4. The ASM is an array of
three shadow cameras combined with position sensitive propor-
tional counters that provides for a quasi-continuous coverage of
the sky visible from RX'IE. In practice, lightcurves in three en-
ergy bands-- 1.3-3.0 keV, 3.0-5.0 keV, and 5.0--12.2 keV -- as
well as over the whole ASM band are publically available from

1JILA, University of Colorado, Campus Box440, Boulder, CO 80309-0440, USA; (nmow_, dove}@roeimmte.eolorado.edu
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Fig. 1 .-- Left: RXTE All Sky Monitor data for GX 339-4 (5 day averages in the 1.3--12.2keV band) vs. Truncated Julian Date (TJD) = Julian
Date (JD) -2450000.5. Dashes indicate dates of our RXTE pointed observations, diamonds indicate dates of MOST observations (Hannikainnen
et al. 1998), and triangles indicate dates of ATCA radio observations (Corbel et al. 199_). Right: A Lomb-Scargle Periodogram (cf., Lomb 1976,
Scargle 1982) of the ASM data for TJD < 800. We have used 600 periods ranging from 2 weeks to 500 days. Lines are estimates of the 99.9% and
90% significance levels.

the ASM data archives (Lochner & Remillard 1997). Typically
there are several 90 s measurements available for each day. Fur-
ther descriptions of the instrument and first year results are pre-
sented by Levine et al. (1996) and Remillard & Levine (1997).

In Figure 1 we present the ASM data of GX 339-4 up un-
til Truncated Julian Date (TJD) _ 800 (1997 November 15).
See paper I for a presentation of the complete to date ASM
data of GX 339-4. We also indicate in this figure the dates
of our RXTE observations, as well as the dates of Australian

Telescope Compact Array (ATCA) and Molongolo Observing
Synthesis Telescope (MOST) radio observations of GX339-4
(Fender et ai. 1997; Corbel et ai. 1997; Hannikainnen et al.

1998; paper I). The average la error bar for a point presented
in Figure 1 is _ 0.4 cts s -] . Note the three peaks (at TJ-'D _, 280,
480--580, 780) in the ASM data that occur at intervals separated
by _ 250 days.

We determined the significance of any possible long term pe-
riodicities in the ASM light curves by computing the Lomb-
Scargle Periodogram (Lomb 1976; Scargle 1982) for the 1.3-
12.2 keV band for 5-day average data. Here we only average
data where the best fit to the source position and flux in an ASM
observation has a X2d < 1.5 (el. Lochner & Remillard 1997)
in each of the three ASM energy channels. We only considered
ASM data taken before TJD 800, as GX 339-4 underwent a

state change shortly thereafter (see paper I). The periodograrn
shown in Figure 1 reveals evidence of a 240 day period at
greater than the 99.9% significance level. [The significance lev-
els were estimated following the methods of Home & Baliunas

(1986).] Epoch folding (of. Leahy et al. 1983; Schwarzenberg-
Czerny 1989; Davies 1990) of the ASM lighteurves also shows
evidence of this 240 day periodicity.

Long timescale periodicities and quasi-periodicities are rela-
tively common in ASM observations of binary sources (Remil-
lard 1997, Private Communication). Evidence for a 294d pe-
riodicity in Cygnus X-1 has been previously reported (Kemp
et al. 1983; Priedhorsky, Terrell & Holt 1983), and is readily ap-

parent in t _e ASM data during the hard state. A 198 day period-
icity also has been observed in LMC X-3 (Cowley et al. 1991;
Wilms et d. 1998b). We note that the observed timescales of

these peril xticities are comparable to the timescales expected
from the Oe radiation pressure driven warping instability dis-
covered by Pringle (1996) (see also Maloney, Begelman &
Pringle 1996; Maloney & Begelman 1997; Maloney, Begelman
& Nowak 1998). This is a fairly generic instability that causes
a radiatively efficient (i.e., non-advection dominated) accretion
disk to w:xp and precess on O(100 day) timescales. Such a
timescale s consistent with the periodicities seen in many bi-
naries and with the 240 periodicity that we see in GX 339-4.

As disc lssed in paper I, however, both the Compton corona
models an ] the ADAF models of the spectral data suggest that
the observ-,d flux variations are in large part attributable to vari-
ations of the coronal radius. A pure warped, precessing disk
model would invoke only inclination angle effects. This is un-
likely to b_ the case for GX 339--4. As discussed by Maloney,
Begelman & Pringle (1996), however, the precession timescale
and warp ,_hape are more sensitive to the outer boundary condi-
tions than he inner boundaryeonditions. Perhaps then it is pos-
sible that what we observe is a combination of a quasi-steadily
precessing disk on large radii combined with coronal structure
changes o a small radii. Although 240 days is a characieris-

tic timesc_le in both the Lomb-Scargle periodogram and in the
epoch folding analysis, it is obvious from Figure 1 that we are
not observing a strictly periodic phenomenon.

3. POWERSPECTRALDENSIT1F..S

We sin( ied the variability of GX 339-4 using data from
the Propoltional Counter Array (PCA) on-board RXTE. The
PCA consists of five nearly identical co-aligned Xenon propor-
tional cou],ter units (PCUs) with a total effective area of about
6500cm 2, and it is sensitive in the energy range from 2 keV to

,_ 60keV IJahoda et al. 1996). We only used data where all five
PCUs wer; turned on, and where the elevation angle between
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the spacecraft pointing direction and the limb of the earth was
greater than 10 °. PCA count rates for the GX 339--4 obser-
vations ranged from 200 to 800 cts s -j, and were of O(10ks)
duration.

To study the short timescale variability, we created 2 -8 s res-
olution lightcurves in 4 different energy bands: 0-3.9 keV, 3.9-
7.5 keV, 7.5-10.8keV, 10.8-21.9keV; hereafter labelled bands
A, B, C, and D ] . Note that this is one fewer energy band and
half the time resolution than for our Cyg X-1 observations
(Nowak et al. 1998a). This was required to obtain good statis-
tics because the GX 339--4 observations discussed here ranged
from 200--800cts s-l, as opposed to the 4500cts s -I observed

for Cyg X-1. Energy bands A-D each had roughly the same
count rate for a given observation. As for the spectral analy-
sis (paper I), we found that all the observations were similar in
their properties, with the exception of Observation 5. Observa-
tion 5 was approximately a factor of 5 fainter than the brightest
observation (Observation 1).

As for our RXTE observations of Cyg X-1 (Nowak et al.
1998a), we combined low frequency (,,_ 8 x 10-4-7 x 10 -3 Hz)

FFTs made from a few (6-16) data segments of length 512-
1024s with higher frequency (7 x 10-_-128Hz) FFTs made
from somewhat more (_ 70) data segments of length 128s.

From these data segments we created PSDs for all of our ob-
servations. We present two examples of the resulting PSDs
in Figure 2. With the exception of Observation 5, all PSDs
were qualitatively and quantitatively similar to that presented
in Figure 2 for Observation 7. The PSDs for Observations 1--4
and 6-7 have shapes roughly similar to what we observed for

Cyg X-l: flat from _ 10-3-0.03Hz, approximately <x f-] in-
between 0.03-3 Hz, and steeper above _, 3 Hz (Nowak et al.
1998a). The PSDs for Observation 5 have qualitatively simi-

lar shapes; however, the break frequencies are approximately a
factor of three lower.

Doubly broken power laws provided adequate descriptions of
the PSDs for our RXTE observations of Cyg X-I (Nowak et al.
1998a). Here, however, we clearly see that the GX 339--4 PSDs
contain more structure. An _ 0.3 Hz quasi-periodic oscillation

(QPO) is evident in Observation 7. In fact, this QPO appears
at some level in all of our observations except Observation 5.

Even ignoring the QPO features, the PSD is only marginally
approximated by a doubly broken power law.

We have tried to fit the shape of the PSDs with a number of
different functional forms. For example, a singly broken power
law with a Lorentzian absorption feature at _ 0.3-1 Hz pro-
vides good fits to all of the PSDs. Here we show the results of

fitting a weak power law plus two broad Lorentzians. As we
further elaborate upon in §4 and §5, such a fit may have some

physical relevance. The Lorentzian and power law components
may represent separate, broad-band processes that are individ-
ually coherent (between their soft and hard variability), but that
are incoherent with one another.

Sample fits to the broad-band power are presented in Fig-
ure 3, and results for all of our data are presented in Table 1.
The functional form of the Lorentzians that we fit is given by

R2Qf° (1)
P(f) = 7r-] f2o+ Q2(f _ fo)2 •

Here f0 is the resonant frequency of the Lorentzian, Q is
the quality factor (,_ fo/Af, where Af is the full-width-half-

maximum of the Lorentzian), and R is the fit amplitude (root

mean square variability, rms = R[ 1/2- tan -! (-Q)/Tr] t/2, i.e. rms
= R as Q -_ oo). For all the fits presented in Table 1, Q < 1. We
thus cannot consider the broad-peaks in the observed PSDs to

be "quasi-periodic oscillations". The fits are more rightly con-
sidered to be indicative of broad-band power with characteristic

timescales -,, F01 . Note also that, for all of the fits, 2Xred < 2-

3. Although this formally represents an unacceptable fit, this
is partly attributable to the excellent statistics achievable with
RXTE. Even small fractional deviations from the fit are highly

statistically significant. In practice we have found that 2Xred < 2

is nearly impossible to achieve with any simple functional fits.
Futhermore, the fits with the largest 2Xr_d showed the most pro-
nounced 0.3 Hz QPO, as in Observation 7.

For Observations 1-4 and 6-7, the low frequency broad-band

power was peaked near _ 0.3 Hz, while the high frequency
broad-band power was peaked near _ 2.5 Hz. The rms vari-
ability amplitudes were all comparable for these observations.
Observation 5 had a somewhat larger rms variability amplitude.
The trend for all observations was for the rms variability ampli-
tude, measured from 7 x 10-3--40 Hz, to decrease with increas-

ing energy band, although this is only marginally evident in the
individual fit components (el. Figure 3). In Figure 3 we plot
the best fit rms variabilities and peak frequencies for the two
Lorentzian fit components vs. the observed 3-9 keV flux.

Observations 1-4 and 6-7 span a factor of two in observed
3-9 keV flux. The PSD parameters, however, show no obvious
trends with flux, except for exhibiting weak evidence for the
rms variability of the low frequency Lorentzian fit component
to increase with 3-9 keV luminosity. Perhaps the most remark-
able aspect of this subset of the observations is how similar all
the PSDs appear to one another despite the factor of two spread
in the observed 3-9 keV flux.

The _, 0.3 Hz QPO is most prominent in Observation 7. Its

strength and width are somewhat difficult to characterize, how-
ever, as it is difficult to determine the 'continuum' level of the
PSD to which it should be compared. The rise of the QPO

appears sharper than its decline, and typically there is a PSD
'dip' at _ 0.05 Hz before the peak of the QPO. We have tried a
variety of narrow Lorentzian plus broad-band power fits to the
features; however, the best fit parameters are highly dependent

upon the assumed form of the underlying broad-band PSD. Fur-
thermore, narrow Lorentzian fits do not capture the asymmetric

shape of the QPO.
Being unable to find a satisfactory functional fit to the QPO,

we have chosen to characterize it in the following manner. We
have measured the location of the PSD 'dip' that occurs be-

fore the QPO peak, as well as the location of the QPO peak.
(Factoring in noise fluctuations, the QPO is sharp enough from
dip to peak that the location of each is likely accurate to better
than two unaveraged frequency bins, i.e. 0.015Hz.) We have
also measured the dip and peak PSD amplitudes. As for the
fits to the broad-band PSD discussed above, there are no obvi-

ous trends between QPO parameters and the observed 3-9 keV
flux. Furthermore, there is no obvious trend between QPO peak

power and frequency, as shown in Figure 5. Although the QPO
frequency is characteristically near 0.3 Hz, it is not at a steady
frequency and it varies over a range of 0.08 Hz. Peak QPO am-
plitudes and widths, however, are somewhat less variable. Note
that the total rms variability in the region of the QPO typically

1We also created 2 -13 s resolution lighteurves to search for signatures of high frequency features. No evidence for such features was found. Note also that the

effective lower limit for energy band A is more _ 2 keV.
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Table 1: Fits to the PSD of the form: Afr+x -1 (R_Q,ft/[.f_+Q_(f-fD2]+R2Q2f_[f2+Q22(f-f2)2]). Energy ranges of bands A-D are de-
scribed in the text. T represents energy bands A-D summed together. All fits were in the range f = 0.1-30Hz (47 degrees of freedom), except for
Observation 5 which was fit in the range f = 0.03-10 Hz (45 degrees of freedom). Errors are the nominal 90% confidence level for one interesting
parameter (Ax 2 = 2.71).

Obs. Band RI fl QI A 1" R2 f2 Q2 x 2

(x 10 -2) (Hz) (x 10 -3) (x 10 -2) (Hz)

1 A 24.+-2: 0.33_:_ +0.3 ,7 ,_+L,* -1.23_:_ 19._+]: +0.0.3 +0*022.2-0.6 0.9-013 102.1.2_o.2 ".-'-1.7

1 B 26._*22: +0•04 1.0_:_ (: A+I.`* -1.28_'_ 21.+-222 +0,0.3 +020.31..o.o3 .... 1.s . 2.6-0.6 0.8-013 116.

1 C 25.:22: 0.31_:_ +0,03 1., , 9,_+0.os 21.+-_: +0.4 0.7_232 84.1.0..o h 4._zs -, .---'-0.32 2.4.-o.8

1 D 20.+_t: n -a,:+0.o3 +0.3 _ ,+1.o _1.17_:_9 16.+-32 +00.3 +0.23.2-0.6 1.1-0.,, 112.,,.-,-'-0.02 1.3-o.2 .....U_l i

1 T 0.3 :o +0.3 lg.+-l: +01 +0,2.9-013 129.0.9.-o.i . . 1-1-0.2

2 A 27._ +0.06 +0.4 A t.+2.7 1 Ag. +0"13 23.-'_i +0.,, +0 30.28-0.03 0.9-o.I .... 3.,* -_ ."'-'-0.51 2-2-0.7 0.8-012 103•

/3 _O +0-05 +0.3 a a+1.s 1 an+0.os 20.+31 +0.3 +0.22 B 26.+-_i .... -0.03 0.9-0.1 .... 1.7 -" .-'"-0.t5 2.6-0.5 0.9-0.3 73.

2 C 22.+_i +0.04 ,,I'0,4 1.8 -1.27"_i°_ 21 .-'_i +0.5 0.,-/_.3 74.0.32-0.03 1.3-0.2 6.7+-2.9 2.2_1.o .

+0.4 2.0 1 ,1<+0.13 20.+_332 +0.4 +0.32 D 21.+-]: 0-31_'_3 1.1-0.2 3-7_-3.4 -" '-'-'-0.62• 2.2-0.7 0.6-0.3 94.

2 T 25.+_32: n "_+0.05 ,,.0.3 ,_ ,+1.1 +o.o4 +1 +0 1 1.0-0.+0"12.... -0.03 0.9-0.1 v.,-0.9 -1.24-0.06 18._11 2.8-013 102.

t3 "2q+0 -03 4.0.4 A g+2.8 1 AK +0,16 24.._i +05 +0.53 A 24.+-31 .... -.0.03 1.3-0.2 .... 2.9 --s .'v,..,-0.51 0.6-0.11-8-013 77.

3 B 25.+_221 +0"04 1-o.2+0.3 -''-I._c_+l.g +0.o9 +3 2.2-0. 4+0.3 0.8-0. 2+0.20.30-0.03 1. -1.32-0.16 22._21 86.

,,)+0 o3 +0.,, (: a+1.7 .27_:_ 22.:3: +0,, +033 C 22.+-21 0.-,,,-01o2 -1 2.0_i,* 0.6-013 73.1.3-0.2 -'._-3.4
t_,l_+0.02 +03 1.3 +008 +3. +043 D 19.+-_i .... -0.02 1.5-0.2 5-0+-2.7 -1 •25-0133 19._2 2.2-01`* 0.7_i 3 92.

3 T 24.+_I: 0.30_:_ +03 _ A+l.o 9,+0.03 +2. +0.1 +0,0.9_o h 119.2.5-0.,,1.1-011 -1 20._ L..,.-v-0.8 ' _v-0.08

4 A 19.+_]: 0.35-0.o3+0"°31.6-02,,+07 1 ....,<+Ls2.1 -1.17_:_ 16.+_52 2.0-0.7+0.5 0.9-0.3+0.5 48.

+005 +0.5 K ,_+2.1 +0.09 +4 2 A't'0A +0.34 B 24.+_321 0.31_o:o4 -I 20.-31 82.1. I-0.2 _..-'--4.5 .30-0.53 '-'-1.1 0.8..0.,*
t_ ':tK +0-03 ..*.05 "7 ,_+2.1 +0.0"7 +7 +0.8 +044 C 19.+-21 .... -0.03 .... 5.o .24-0.4 7 1.9_ 1.5 0.6.-o15 62.1.5-013 -1 21 .--4:

4 O 17.+-222 0.37_: °] +05 , e+L3 1 ,,+0.05 14._*_: +0.4 +0.51-5-0_3 .... 1.`* -..--'-0a0 3.0-0.8 1.2-0.5 66.
f_ ,_ 1+0.05 +0.`* g g+l.I -1.0.04 +2.4 T 22.+21 .... -0.03 1.0-0.2 ".-'-0.9 -1.23-o.o7 18._1. 2.7_:: s 1.0_:_ 86.

5 A 27._.2" +o.o4 a o+I.o +6.5 I,+I.o6 +7. +07 a _+Ll0.08-0.05 v.o-0.6 5.1.4.g -l.J _-0.g5 25--1o. 1.0..o27 ,.,.,,-0.,, 59.

5 B 31.__' 0.07_:_ +0.6 , ,+5.o -1 ,ra+0.92 29._'_: 0.7_:_ +0.50.4-0.2 46.• 0.6-0.5 _.-'-3.2 ._.-'-0.73

5 c ,,. +0, .+51 , ,,,+1.1o +030.6-0.3 69.35._1o. v.,,-,-0.04 0.4-0.3 1 .U_l.4 -, .-',-'-0._7

5 D 23.+__: +o.04 +0.s +4.0 -1.07_:4 _9 20._" +0.6 +0.90.08-0.03 0.8-0.3 5.0-3.s . 1.1-0.6 0.6-0._ 49.

5 T 35.+__: -,.o.04 +0.`* 3.2 +0.600.03-0.03 0.3.-o.2 1 .lYe.,, -1 27.._: +0.3 +0.2•25-0.`*5 0.9-0.3 0.5-0.2 85.

6 A 21.:]: 0.33_:_ +0., o a+1.7 -1.17_'g 17._'_: +0.3 +0,,1.4-0.2 .... 1.5 . 2.4-0.6 1.2.-o15 83.

n "m+0.05 +0.,, ,_ ,_÷I., -1.18_:_ 18.+-_: 2.7_:_ 2 +026 B 25.+-321 .... -0.03 |. 1-0.2 .... 1.,, 1.1-013 89.

6 C 22.+_]: 0.33_'_ +o.5 , ,,zl , a,+0ao 22._+_: +0.5 0.7-_:3 72.• 1.3-0.2 -'.-.'-4. I -"-" _-0.65 2-0-13
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is _ 5%, therefore the QPO amplitude is at most a few percent.

4. COHERENCE AND TIME LAGS

As discussed by Vaughan & Nowak (1997), the coherence
function is a measure of the degree of linear correlation between
two time series. Specifically, it gives the fraction of the mean-
squared variability at a given Fourier frequency in one time se-
ries that can be attributed to, or equivalently predicted from, the
other. The fact that coherence is often near unity over a wide
range of frequencies (cf. Vaughan & Nowak 1997; Nowak et al.
1998a) is what makes it meaningful to then talk about charac-
teristic Fourier frequency-dependent time delays between two
time series (cf. Miyamoto & Kitamoto 1989; Miyamoto et al.
1992; van der Klis 1989; Nowak et al. 1998a).

The techniques that we used to calculate the coherence and
time delays for the GX 339--4 lightcurves are discussed in
Vaughan & Nowak (1997) and Nowak et al. (1998a). For all
observations we have calculated the coherence function,

v2(f) = I(S'(f)h'(-f))l 2
{IS(f) l=)(I/_(f)F) ' (2}

between the FF-'Ts for energy band A [S(f)] and the FFTs for the
other three energy bands [H(f), angle brackets indicating aver-
ages over Fourier frequencies and individual data segments; cf.
Vaughan & Nowak 1997; Nowak et al. 1998a]. For all obser-
vations except for Observation 5, we have calculated the time-
delay between energy band A and the other three energy-bands.
For Observation 5, noise limitations only allow us to calculate
the time-delay between the lightcurves for energy band D and
energy band A. We have averaged over logarithmically spaced
frequency bins, ranging over frequencies f --_ 1.4f for all ob-
servations.

As shown in Figure 6, the coherence function is near unity
from 10-3 to _, 3Hz (Observation 5) or _ 10Hz (all other ob-

servations). Above _ 3-10Hz, there is a noticeable drop in co-
herence, similar to what we saw with our RXTE observations

of Cyg X-1 (Nowak et al. 1998a). The Cyg X-1 observations
also showed a loss of coherence below _, 0.02 Hz; however,

the coherence in GX 339--4 remains near unity down to Fourier
frequencies as low as _,, 10 -3 Hz.

We note that the coherence between energy bands A and D
shows evidence of an _ 0.1 dip near 0.5 Hz (Observation 5) and
near 2 Hz (all other observations). The evidence for this dip is
weak in Observation 5 (comparing band A to D, the 0.45 Hz
point is 2a below unity, and the adjacent 0.64 Hz point is only
lcr below unity), but is somewhat stronger for Observation 7
and the other observations (comparing band A to D for Obser-
vation 7, the 1.8 Hz point is > 3a below unity, and the adjacent
2.5 Hz point is _, 2.7a below unity). These dip frequencies,
however, are approximately the frequencies at which the two
broad Lorentzian and power law fit components (of. Figure 3
and Tab. 1) overlap. Thus we hypothesize that there are indeed
multiple broad-band processes occuring in GX 339-4 that are
individually coherent but that are incoherent with one another.
As with Cygnus X-I, we further hypothesize that the loss of
coherence at high-frequency is indicative of mulitple incoher-
ent processes, possibly 'flares' feeding the corona on dynamical
timescales (Nowak et al. 1998a; Nowak et al. 1998b).

In Figure 6 we also show the energy-dependent and Fourier
frequency-dependent time delays. The overall structure is very
similar to that observed in the hard state of Cyg X-I (Miyamoto
& Kitamoto 1989; Miyamoto et al. 1992; Crary et al. 1998;

Nowak et al. 1998a). In the regions not dominated by noise
statistics, the hard photon variability always lags the soft pho-
ton variability, and the delays decrease with increasing Fourier
frequency. The detailed frequency-dependent structure of the
delays, however, is more complicated than a simple power law.
For example, the time lags between bands A and D for Observa-

tion 7 show a flattened region near 1 Hz. As for Cyg X-I, there
is a large dynamic range in the time delays, with the longest
time delays (_-, 0.1 s) being much longer than typical charac-
teristic timescales of a small corona (cf. Nowak et al. 1998b).
Also as has been observed for Cyg X-I (Miyamoto & Kita-
moto 1989; Miyamoto et al. 1992; Crary et al. 1998; Nowak
et al. 1998a), the time delay observed in GX 339-4 is consis-
tent with scaling as the logarithm of the ratio of the two energies
being compared. This latter fact has prompted Kazanas, Hua
& Titarchuk (1997) (hereafter KHT) to suggest that the time-

delays are related tophoton propagation timescales in a very
large (R _, l0 s GM/c _) corona. In Figure 7 we show the mea-
sured time delay for three Fourier frequencies (0.1 Hz, 0.9 Hz,
2.5 Hz) as a function of the measured 3-9 keV flux. The low-

est flux observation consistently shows the shortest time delays
at nearly all Fourier frequencies. The highest flux observa-
tion shows the longest time delays at many Fourier frequen-
cies, and shows at least the second longest time delays at nearly
all Fourier frequencies. Observations at intermediate fluxes are
scattered both positively and negatively about an extrapolation
between the low- and high-flux point. It has been previously
shown that the time delay decreases in Cyg X-1 as it transits
from the hard to soft state (cf. Cui et al. 1997). Here we present
a possible correlation between the magnitude of the time delay
and the energy flux for the hard state within a single source.
The strong decrease of the time delay for the lowest flux ob-
servation is counter to the simplest expectations if the coro-'

nal size increases with decreasing flux (e.g. Esin, McClintock
& Narayan 1997), or if characteristic 'propagation speeds' in
the corona decrease with decreasing luminosity (Nowak et al.
1998b). However, if the coronal size is decreasing with decreas-
ing luminosity then this observed decrease is understandable in
terms of propagation models, whether it be propagation of pho-
tons (KHT) or propagation of some sort of other disturbance
(Nowak et al. 1998b).

We have found one potential correlation between the mea-
sured time lags and the coherence function, related to the vec-
tor analogy for the phase lags and coherence function discussed
by Nowak et al. (1998a). If we take the Fourier transform of a
soft X-ray light.curve, As(f), and a Fourier transform for the
hard X-ray lightcurve, Ah(.]'), the cross spectrum is given by
A*(f)Ah(f), which can be considered as a vector in the complex
plane (el. Fig. 8). As discussed by Vaughan & Nowak (1997),
the magnitude and angle (corresponding to the phase delay be-
tween hard and soft variability) of this vector is well-defined if
the coherence function is unity.

If the net observed cross spectrum, however, is made up of
the sum of individually coherent processes, it is possible that
the net observed coherence will be less than unity. As was noted
by Vaughan & Nowak (1997), specifically eq. (10), a sum of
individually coherent processes is itself coherent if and only if
each process has the same identical transfer function from soft
to hard photon variability. In terms of the vector analogy, this
is a statement that the vectors representing each process within
the sum all lie in the same direction. The coherence function in

such a case is the square of the ratio of the magnitude of this
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sum compared to the magnitude of the sum if all the vectors
had the same angle.

Let us consider the following special case of eq. (10) from
Vaughan & Nowak (1997). Assume that there are multiple
input (soft) processes, indexed by i, with Fourier amplitudes
A_(f). Let us assume that each of these input processes leads
to an output process with Fourier amplitude A_(f) that has a
coherent phase delay of AOi(f). (Here we take the Fourier am-
plitudes to be real quantifies.) Finally, assume that the input
processes are incoherent with one another, and likewise that the
output processes are incoherent with one another. Generalizing
eq. (10) of Vaughan & Nowak (1997), the resulting measured
coherence function will then be

k--f_"_Ai2ai2+Ea_AibAJsAJh[li--/j (m_J _2A_i)2] )

(Z Z /-'x AI 2 A_ 2 (3)

where we have adopted a small angle approximation. Under the
same assumptions, the net measured phase lag will be given by

A_b,n(f) _ EiA_Ah A_b/
__,iAisA_ (4)

That is, the measured phase lag is simply the weighted mean of
the individual phase lags. We illustrate this situation in Fig. 8.
For such a model as this, the net observed phase delay is re-
lated to the net observed coherence function, and both in turn
are related to the observed soft and hard PSDs. Fit parameters

are the amplitudes (A_, A_) of the individual components of the
soft and hard PSDs, and the phase lags (A_bi) between the soft
and hard variability for each of these components.

We have searched for such a connection between the Fourier

phase lag and the coherence function by applying equations (3)
and (4) to the data. We have assumed that there are three com-

ponents to the PSD: a low and high frequency Lorentzian and a

power law, as for the fits presented in Table 1. In the fitting pro-
cedure we assumed that all three A_bi(f) were independent of

Fourier frequency. We refit the PSD data simultaneously while
fitting the phase lag and coherence data. We searched for the
minimum of the sum of the X 2 from the four data sets being
fit: soft X-ray PSD, hard X-ray PSD, phase lags, and coher-
ence. We fit the PSDs over the same frequency range and with
the same frequency binning as in Table 1; however, we only
fit the coherence and phase lags over the range f = 0.2--4Hz.
This was the frequency range over which the phase lags were
least affected by Poisson noise, and it avoided the strong loss
of coherence at high frequency. These strong high frequency
coherence losses, as we discuss further below, may be due to
nonlinear processes, rather than be due to the sum of linear pro-
cesses (cf. Vaughan & Nowak 1997). The results for these fits
are presented in Figure 9 and in Table 2.

Assuming that the PSD, phase lags, and coherence are the re-
sult of summing three independent processes (a power-law plus
two Lorentzians), we see that equations (3) and (4) seem to pro-
vide a rough description of the time lag and coherence data. The
fits make plausible that there is indeed a deeper underlying con-
nection between the time lag and coherence data. One feature
of these fits is notable. Namely, in order to produce coherence
drops as large as are seen, one needs to add linear processes
with greatly varying intrinsic time lags. In fact, one process,
the power law, has nearly no time delay between soft and hard
variability, whereas the high frequency Lorentzian process is
seen to require even intrinsically longer time lags than the al-
ready very long time lags that are measured.

5. DISCUSSION

Let us consider these results in light of two models: the
Comptonization model of KHT and 'shot noise' models (cf.,
Terrell 1972; Sutherland, Weisskopf & Kahn 1978; Priedhorsky
et al. 1979; Miyamoto & Kitamoto 1989; Lochner, Swank &
Szymkowiak 1991; Nowak 1994, hereafter N94; Belloni et al.
1997; Poutanen & Fabian 1998, hereafter PF; and references

therein). In the former model, a source of white noise is as-
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Table 2: Best fit Fourier phase lags between energy channels A and D, where we have used equations of the form of eq. (2) and eq. (3) and where
we have assumed three separate components to the soft and hard X-ray PSD. PSD components are as in Table !: a low frequency Lorentzian (/1),
a power law (pl), and a high frequency Lorentzian (12). PSD data, logarithmically binned over frequencies f _ 1.1 f, were included in the fitting
process with the resulting fit parameters always being within the error bars shown in Table 1. Phases-- AOtl, AOvt, AOn-- are the Fourier phase
lags between hard and soft variability for each PSD fit component individually, and positive phase corresponds to hard variability lagging behind
soft variability. The phase lags were assumed to be constant as a function of Fourier frequency.

Obs. A_j_ A¢,_ A¢n x2/DoF 2X_d
(rad) (rad) (rad)

1 0.13 0.06 0.49 301.5/119 2.53

2 0.18 0.05 0.26 283.4/119 2.38
3 0.13 0.04 0.28 269.9/119 2.27
4 0.15 0.06 0.66 195.8/119 1.65

5 0.06 0.04 0.25 132.4/113 1.17
6 0.16 0.05 0.38 217.4/119 1.82
7 0.11 0.04 0.27 309.91119 2.60

8 0.16 0.05 0.41 198.2/119 1.67

sumed to be present at the center of the system, which is then
"filtered" by passage through a Compton corona. The PSD is
attenuated on those timescales that are shorter than the char-

acteristic diffusion timeseales through the corona. Therefore,

the PSD is more attenuated at higher frequencies than at lower
frequencies, which leads to the characteristic power law PSDs
that are observed in hard state BHC. Time delays are created
by the difference in diffusion times through the corona for hard
and soft photons. Photons that matter over large radii will have
their intrinsic high frequency variability wiped out; therefore,
any observed high frequency variability must be due to photons
that scattered over short path lengths. High frequency variabil-
ity thus exhibits short time delays between hard and soft pho-
ton variability. Low frequency variability potentially can be ob-
served from photons that have scattered over large path lengths,
and thus it can exhibit longer time delays between hard and soft
variability. Extremely large coronal sizes of O(105 GM/c 2) are
required to produce the longest observed time lags.

In shot noise models the lightcurve is assumed to be com-
posed of statistically distributed shots of (possibly) varying pro-
files (cf. Lochner, Swank & Szymkowiak 1991 for detailed ref-
erences and applications to Cyg X-I). Shot and distribution
parameters are fit to various moments and statistics of the ob-
served lightcurves. Time delays between hard and soft vari-
ability are assumed to be due to differing shot profiles and/or
shot distributions in different energy bands (cf. Miyamoto &
Kitamoto 1989; N94; PF). Recently, PF have associated the en-
ergy dependent shots with the 'energization' of a corona, which
was parameterized by a series of equilibrium models where the
energy input to the corona was a function of time.

Does the data prefer one model over the other? The detailed
structure of the PSD is likely to be more difficult to produce in
the KHT model. Although the observed PSD can be modeled as
a singly broken power law with an 'absorption' feature, it is dif-
ficult to imagine a Compton corona configuration that would act
as such a 'notch filter'. It is somewhat easier to imagine, how-

ever, two or more preferred shot durations in the distribution of
shot timescales. A suitable distribution of shot timescales could

easily reproduce the type of PSD fits presented in §3.
Can the flux dependence of the PSD be reproduced? This de-

pends upon whether the coronal radius decreases or increases as
the observed flux decreases. The former possibility can be con-

sistent with our "sphere+disk' corona fits to the spectral data
(paper I). The latter is more consistent with the ADAF models
to the spectral data (paper I), as lower luminosity often implies
a larger 'transition radius' to advective flow. The transition ra-
dius in the ADAF models is the radius at which the flow transits

from being geometrically thin, optically thick, and radiatively
efficient to being geometrically thick, optically thin, and radia-
tively inefficient. The larger this transition radius, the smaller
the overall accretion efficiency (cf. Narayan 1996; Esin, Mc-
Clintock & Narayan 1997). Lower luminosities can be asso-
ciated with lower overall efficiencies. The dependence of the
coronal radius on observed X-ray luminosity is less constrained
for our 'sphere+disk' coronal models (Dove et al. 1997; paper
I). Larger coronae, however, can produce larger observed X-ray
fluxes in these models.

In the KHT model, the larger the corona the more attenu-
ated the high frequency PSD will be. This will cause the PSD
to apparently 'shift' towards lower frequency. Similarly, shot
noise models usually associate the shot timescales with char-
acteristic accretion flow timescales. What sets these timescales

are usually not explicit in shot noise models; however, one ex-
pects the timescales to increase for larger coronae, consistent
with the expectations of the ADAF models. That is, we expect
to see the lower characteristic frequencies associated with the
outer accretion flow. Associating a smaller corona with lower
luminosity, as can be fitted within the context of 'sphere+disk'
corona models, would lead to trends opposite of the observa-
tions.

What is the expected relation between the PSD and the ob-
served time lags for these models? If the coronal size decreases
with decreasing luminosity, then the KHT model agrees with
the observations. The shorter scattering path lengths of a small
corona will produce characteristically shorter lags between the
hard and soft photon variability. The KHT model also correctly
reproduces the observed logarithmic energy dependence of the
time lags. However, it is difficult for the KHT model to rec-
oncile the lower frequency PSDs simultaneously with shorter
time lags. Predictions for shot noise models are more depen-
dent upon the specifics of each model.

Energy dependent shots were first suggested by Miyamoto &
Kitamoto (1989) as the cause of the hard X-ray variability lags
observed in Cyg X-1. This model contained eight input shot
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profiles (four shot durations in two energy bands), and did not
relate the timescales to specific disk physics. The magnitude
and frequency dependence of the hard X-ray lags are adjustable
by changing the duration of the hard shots relative to the soft

shots. In describing observations of the 'very high state' tim-
ing properties of GX 339-4, N94 related the shot durations to
viscous and thermal instability timescales in an accretion disk.
The shots considered in this work were also temperature de-
pendent and became hotter as the shots progressed. This model
reproduced the observed energy dependence of the lags, with
the exception that it did not reproduce the 1.2-2.3 keV photon
variability lagging behind the 2.3-4.6keV photon variability.
As discussed in N94 and Nowak et al. (1997), any shot model
where the characteristic temperature or hardness of the shot

smoothly increases as the shot rises will reproduce time lags
qualitatively similar to those observed in Cyg X-1 and GX 339-
4. In the model of PF, the shot timescales are not related to any
specific accretion timescales; however, the time-dependent shot
hardness is related to a series of equilibrium Compton coronae
models. There is a one-to-one correspondance between the shot
amplitude and its hardness in this model. The PF model cor-
rectly reproduces the magnitude and energy dependence of the
observed time lags.

We expect the following qualitative behavior for the mod-
els of both N94 and PE If we scale the shot duration to longer
timescales, thereby shifting the PSD to lower frequencies, we
also expect the timelags to increase, which is contrary to the
observations. The only way to have a shot produce a lower
frequency PSD and lead to shorter time lags is to alter the spec-
trum of the shot as well as lengthen its duration. Whereas we
do see changes in flux from GX 339-4, we do not see large

changes in the best fit spectral parameters such as optical depth
or coronal temperature. The observed energy spectra do not
leave much room for varying the spectra of the presumed shots
in order to fit both the high frequency PSD/long time lag data
and the low frequency PSD/short time lag data that axe ob-
served. (It is possible, however, for the relative contributions

to the spectra from a 'steady component' and a 'shot compo-
nent' vary in such a way that the average spectrum remains rel-
atively unchanged. The rms amplitude of the PSD significantly
increases for the faintest observation, and therefore its average
spectrum does have a greater contribution from the shots.)

What is the expected coherence function for these various
models? Both the KHT model and the PF model produce unity
coherence, whereas the model of N94 produces coherence sub-
stantially less than unity (Nowak et al. 1997). The KHT model
only considers static coronae, whereas the PF model uses the
same exact linear Comptonization spectrum for each individual
shot. We expect both of these situations to produce unity co-
herence. The N94 model assumes both a sum of different shot

spectra and each shot represents a nonlinear transfer function
from soft to hard variability (Nowak et al. 1997; Vaughan &
Nowak 1997).

Similar to Cyg X-l, GX 339--4 was seen to have near unity
coherence over a broad range of frequencies, with a rolloff at

3-10Hz. Unlike Cyg X-I (Nowak et al. 1998a), however,
there was no evidence for a loss of coherence below _ 0.02 Hz,
but there was evidence for a coherence dip near 2 Hz (0.5 Hz for
Observation 5). At first glance this seems consistent with both
the KHT and PF models. We note, however, that the coherence

function dips to as low as 0.9. Although still a large coherence
value, a dip this low is very difficult to produce by summing

different linear transfer functions with different phase delays, if
all the hard-to-soft variability phase differences for the individ-

ual transfer functions are approximately the same magnitude as
the obsen,_.d phase lags. On the other hand, the nonlinear trans-
fer functions of the N94 model are seen to lead to far stronger
losses of coherence, with typical coherence values being _ 0.1-
0.3 (Nowak et al. 1997). Such coherence values are character-
istic of the coherence function observed at high frequency. (We
previously have suggested that the observed loss of coherence
above _ 3-10Hz may be related to nonlinear effects due to flar-
ing activity feeding a corona on dynamical timescales; Nowak
et al. 1998a.)

The question put forth in Vaughan & Nowak (1997) was:
why are ooserved coherences so close to unity? With the ob-
servations presented here, and in light of the discussion of §4
and equations (3) and (4), we might wish to modify this ques-
tion to: when the coherence function is so close to unity, why
is it as low as observed? We argued in §4 that if there truly
is a relationship between the time lags and the coherence, then
there must be a mix of processes with a broad range of time
lags. The tits to the phase lag and coherence data suggested one

component with near zero lag between hard and soft variability.
The fits further suggested that the higher frequency Lorentzian
componem exhibited characteristically longer time lags (at a
fixed Fourier frequency) than the lower frequency Lorentzian
component. This possibility was not considered in the models
of N94, KHT, or PE However, as the KHT model postulates
only one 'transfer function' from soft variability to hard vari-
ability (i.e., diffusion through the corona), it is more difficult
to reconcile this model with the conjecture that phase lags and
coherence are created by a sum of independent processes. Shot
noise models, however, can introduce multiple, albeit currently
unknown, independent processes in the manner suggested by
the fits to the data.

6. SUMMARY

We hav,; presented timing analysis of a series of 8 RXTE
observatio_s of the black hole candidate GX 339-4. On long
timescales_ there is evidence of a 240 day periodicity in the
ASM ligh_urve. This is not a strictly periodic feature, but
is probably more like a 'characteristic timescale'. Such a

timescale is consistent with warping and precession timescales
(Pringle P._)6; Malone)', Begelman & Pringle 1996); however,
as we discl_ss in paper I, the evidence points more towards coro-
nal size va iations than to inclination effects.

In terms of characterizing the short timescale variability, we
see that the observations break up into two sets. The seven
brightest o_3servations span a range of two in observed 3-9 keV
flux and al_ have comparable timing properties. These observa-
tions all show evidence of an _ 0.3 Hz QPO. The properties of
this QPO ere not strictly steady; however, there are no obvious
correlations with the flux of the source.

The fairtest observation, which is 5 times fainter than the

brightest o _servation, had: larger amplitude variability, charac-
teristic PSI) frequencies that were a factor of three lower than
observed for the other PSDs, and showed shorter time lags be-
tween harc and soft variability. This latter feature, albeit with
a great deal of scatter about the trend, was also mirrored in the

flux dependence of the time lags observed for the brightest ob-
servations.

All PSDs were reasonably well-fit by the sum of three fit
component: a power law, a low frequency Lorentzian, and a



Nowak et al. 13

high frequency Lorentzian. We further suggested that the ob-
served Fourier frequency-dependent phase lags and coherence
could be explained by summing these three components with
differing intrinsic time delays between hard and soft photon
variability.

We discussed all these possibilities in light of various theoret-
ical models. The short time delays for the lowest flux observa-
tion appear to be more in agreement with 'propagation models'
(KHT; Nowak et al. 1998b) if the coronal size decreases with
decreasing flux. If, however, as suggested by ADAF models the

coronal (i.e., advection dominated) region grows with decreas-
ing flux, the trends observed in the time delays are counter to
the theory. Conversely, the low flux/low frequency PSD ob-
servations are more in agreement with the models where the
coronal region grows with decreasing luminosity. Shot noise
models are more likely able to be adapted to explain simulta-
neously the phase lags and coherence as a sum of independent

linear components.
None of the models currently address the complicated

nonlinear processes that may be occurring on dynamical
timescales. Such processes, which could be the 'flares' that
energize the corona and/or the observed radio-emitting outflow
(Fender et al. 1997; Corbel et al. 1997; Hannikainnen et al.
1998; paper I), could be the cause of the strong loss of coher-
ence seen at high frequency in both GX 339--4 and Cyg X-I
(Nowak et al. 1998a), as well as the cause of the 'flattening'
with increasing photon energy observed at the high-frequency
end of the Cyg X-1 PSD (Nowak et al. 1998a).
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